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Abstract 

In recent years, the modified Halley’s methods have been one of the popular 
iterative methods to find approximate solutions to the roots of nonlinear     
equation. In this paper, we propose a new method without the second derivative to 
modify the Halley’s method. The present iterative method is of sixth-order 
convergence and can be viewed as an improvement of the recent works [9, 10]. 
Several numerical examples are given to illustrate the efficiency and performance 
of this method. 

1. Introduction 

Iterative methods are usually the only choice for finding approximate 
solutions to nonlinear equation ( ) 0=xf  in numerical analysis. In recent 
years, various iterative methods based on the Taylor series, 
decomposition and quadrature formulae [1-4, 7-10, 12] have been 
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developed. Newton’s method is an important and basic method [11]. 
Recall that the Newton iteration is defined by the equation 
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This method converges quadratically, which is faster than the bisection 
and the secant methods. 

The Halley’s method is another well-known iterative method, which 
is written as 
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where ( ) ( ) ( ) ( ) .2xfxfxfxLf ′′′=  The method is of third-order convergence. 

To improve the efficiency of the preceding methods, a predictor-corrector 
Halley’s method with sixth-order convergence is proposed by [9]. Once the 
sixth-order convergence becomes effective, that is, the values of this 
method sequence are sufficiently close to the root, the convergence is very 
rapid. However, one of the drawbacks of the Halley’s method and its 
improvement involves the second derivative of the function. The second 
derivative is difficult to evaluate. To overcome this disadvantage, a 
number of methods have been proposed. Chun [2] has presented and 
analyzed a one-parameter fourth-order family of the variants of 
Chebyshev-Halley methods. The family includes a well-known Jarratt’s 
fourth-order method as particular one. Noor et al. [10] have modified the 
Halley’s method by using the finite difference scheme and proved the 
iterative method is of fifth-order convergence. The common key step of 
the above two methods is replacing the second derivative of the function f 
by its finite difference scheme. Zhou [12] proposes another method by 
replacing the second derivative by the combination of two evaluations of 
the function and one evaluation of the first derivative, and gets a 
modified Halley’s method with fourth-order convergence. For other 
related iterative methods, one may refer to [7, 8]. 
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Motivated by these recent works in this direction, we construct a new 
modified Halley iteration without the second derivative. We prove that 
the new method is of sixth-order convergence, which is better than the 
method in [10], and has the same order of convergence as the predictor-
corrector Halley’s method proposed by [9]. The advantage of the new 
method is that, it is of higher order convergence and does not require to 
evaluate the second derivative. 

2. Modified Halley’s Methods 

Consider the nonlinear equation of the type 

( ) .0=xf   (2.1) 

We assume that α  is a simple root of the Equation (2.1). Using Newton’s 
method as predictor and Halley’s method as a corrector, Noor and Noor 
[9] have obtained the following two step method, which is of sixth-order 
convergence. 

Algorithm 2.1. For a given ,0x  compute the approximate solution 

1+nx  by the iterative scheme: 
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In order to implement the algorithm, one has to find the second 
derivative. Thus, Noor et al. [10] have considered replacing ( )nyf ′′  by 

( ( ) ( )) ( ).nnnn xyxfyf −′−′  This idea is very important and plays a 

significant role in developing some iterative methods free from second 
derivatives. Then, the following algorithm is obtained. 

Algorithm 2.2. For a given ,0x  compute the approximate solution 

1+nx  by the iterative scheme: 
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This algorithm does not require the second derivative, and it involves the 
evaluations of the function and the evaluations of the first derivative. 
But, this method has only fifth-order convergence, which is worse than 
Algorithm 2.1. Is there a sixth-order iterative method which does require 
only the evaluations of the function and the evaluations of its derivative? 
Now, let us first consider the approximation of ( )nyf ′′  
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which implies 

( ) ( ) ( )
( )

( ) ( )
( )

( ).,
,

22 nnf
n

nnnf

n

nn
nf yxH

yf

yfyxP

yf
yfyfyL ≡

′
≈

′

′′
=  (2.3) 

Similar to Algorithm 2.1, we replace ( )nyf ′′  by ( ),, nnf yxP  then we 

construct the following iterative scheme: 

Algorithm 2.3. For a given ,0x  compute the approximate solution 

1+nx  by the iterative scheme: 
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It is obvious that this method involves only the evaluations of the 
function and the evaluations of its derivative, and we can verify that the 
present method is of sixth-order convergence. 
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3. Convergence Analysis 

In this section, we give the analysis of convergence of Algorithm 2.3. 

Theorem 3.1. Let α  be a simple zero of sufficiently differentiable 
function f. If 0x  is sufficiently close to ,α  then Algorithm 2.3 has sixth-

order convergence. 

Proof. Let ( )…,2,1,0=α−= nxe nn  and 
( )( )
( )α′
α= f

f
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( ).,3,2 …=k  By Taylor’s expansion, we have 
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Then, it follows that 
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By Equation (3.3), we have 
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Dividing (3.4) by (3.5) gives 
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According to (3.1), (3.2), (3.4), and (3.5), we have 
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Combining Equations (3.3), (3.6), (3.7), and the iterative scheme of 
Algorithm 2.3, we have 
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from which, it follows that Algorithm 2.3 has sixth-order convergence. 
This completes the proof. 
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It is worth noting that, our method is of sixth-order and converges 
very rapidly even though it requires only the evaluations of the function 
and the evaluations of its first derivative. From the definition of the 
efficiency index, one can see this method has a high efficiency index that 

is equal to ,565.164 ≈  which is better than the ones of Newton’s method 

414.12 ≈  and the Chebyshev-Halley methods .442.133 ≈  

4. Numerical Results 

We present some numerical results for various functions to illustrate 
the efficiency of the new developed iterative methods in this paper. Let 
( ) <+1nxf  be the stopping criteria for computer programs, where the 

tolerance   has been chosen equal to .10 14−  We use the following 
functions, most of which are the same as in [5, 6], and display the 

approximate zeros .∗x  

( ) 3414097.1.36523001,104 23
1 =−+= ∗xxxxf  

( ) 0408012.1.74613953,cos2 =+= ∗− xxexf x  

( ) ( ) ( ) .2.0,4153 =−= ∗xxxxf  

( ) 7130919.1.20764782,5cos3sin2
4

2
−=++−= ∗xxxxexf x  

( ) ( ) .0,1logsin 2
5 =++= ∗xxxexf x  

( ) 5439861.0.25753028,232
6 =+−−= ∗xxexxf x  

( ) 8215341.1.40449164,1sin 22
7 =+−= ∗xxxxf  

( ) 3215161.0.73908513,cos8 =−= ∗xxxxf  

Displayed in Table 1 is the number of function evaluation (NEF) required 
such that ( ) <+1nxf  for various methods. From Table 1, we conclude 

that the variant of Halley’s method (VHM) requires the less NEFs as 
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compared to the classical methods including Newton’s method (NM), 
Chebyshev’s method (CVM), Cauchy’s method (CYM), and Halley’s 
method (HM). Therefore, the new method improves the computational 
efficiency greatly. 

Table 1. Comparison of various iterative methods 

( )xf  0x  NM CVM CYM HM VHM 

1f  1 12 12 9 9 8 

 2 12 12 9 9 8 

2f  1 8 9 9 9 8 

 2.5 10 12 9 12 8 

3f  0.25 10 9 9 3 8 

 0.15 12 9 12 3 8 

4f  – 1 10 12 9 9 8 

 – 1.45 12 12 12 9 8 

5f  – 0.8 10 12 15 9 8 

 1.2 10 12 12 12 8 

6f  2.2 10 12 15 12 8 

 – 2.5 10 12 12 12 8 

7f  1.2 10 12 12 12 8 

 2.5 12 15 15 15 8 

8f  0.1 10 12 9 9 8 

 2.5 10 12 12 12 8 
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