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Abstract

In recent years, the modified Halley’s methods have been one of the popular
iterative methods to find approximate solutions to the roots of nonlinear
equation. In this paper, we propose a new method without the second derivative to
modify the Halley’s method. The present iterative method is of sixth-order
convergence and can be viewed as an improvement of the recent works [9, 10].
Several numerical examples are given to illustrate the efficiency and performance
of this method.

1. Introduction

Iterative methods are usually the only choice for finding approximate

solutions to nonlinear equation f(x) = 0 in numerical analysis. In recent

years, various iterative methods based on the Taylor series,
decomposition and quadrature formulae [1-4, 7-10, 12] have been
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developed. Newton’s method is an important and basic method [11].
Recall that the Newton iteration is defined by the equation

f(x)

Xn+l = Xp — f'(x )
n

This method converges quadratically, which is faster than the bisection
and the secant methods.

The Halley’s method is another well-known iterative method, which
is written as

1 Lf(xn) f(xn)
1_%Lf(xn) f(xn)

where L (x) = f"(x)f(x)/ f (x)%. The method is of third-order convergence.

To improve the efficiency of the preceding methods, a predictor-corrector
Halley’s method with sixth-order convergence is proposed by [9]. Once the
sixth-order convergence becomes effective, that is, the values of this
method sequence are sufficiently close to the root, the convergence is very
rapid. However, one of the drawbacks of the Halley’s method and its
improvement involves the second derivative of the function. The second
derivative 1s difficult to evaluate. To overcome this disadvantage, a
number of methods have been proposed. Chun [2] has presented and
analyzed a one-parameter fourth-order family of the wvariants of
Chebyshev-Halley methods. The family includes a well-known Jarratt’s
fourth-order method as particular one. Noor et al. [10] have modified the
Halley’s method by using the finite difference scheme and proved the
iterative method is of fifth-order convergence. The common key step of
the above two methods is replacing the second derivative of the function f
by its finite difference scheme. Zhou [12] proposes another method by
replacing the second derivative by the combination of two evaluations of
the function and one evaluation of the first derivative, and gets a
modified Halley’s method with fourth-order convergence. For other

related iterative methods, one may refer to [7, 8].
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Motivated by these recent works in this direction, we construct a new
modified Halley iteration without the second derivative. We prove that
the new method is of sixth-order convergence, which is better than the
method in [10], and has the same order of convergence as the predictor-
corrector Halley’s method proposed by [9]. The advantage of the new
method is that, it is of higher order convergence and does not require to

evaluate the second derivative.

2. Modified Halley’s Methods

Consider the nonlinear equation of the type
f(x) = 0. (2.1)

We assume that o is a simple root of the Equation (2.1). Using Newton’s
method as predictor and Halley’s method as a corrector, Noor and Noor
[9] have obtained the following two step method, which is of sixth-order

convergence.

Algorithm 2.1. For a given x;, compute the approximate solution

X,.1 by the iterative scheme:

_ flxn)
Yn = X f’(xn),

- 2f (¥ )f'(¥) '
" Zf,(yn)2 _f(yn)f”(yn)

Xn+1

In order to implement the algorithm, one has to find the second

derivative. Thus, Noor et al. [10] have considered replacing f"(y, ) by
(f'(y,)=f'(x,))/ (3, —x,). This idea is very important and plays a
significant role in developing some iterative methods free from second
derivatives. Then, the following algorithm is obtained.

Algorithm 2.2. For a given x;, compute the approximate solution

X,.1 by the iterative scheme:
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o flx)
In = T, )

) 21 (e ) (3 )F (3) _
21 (2 ) (3 )2 = Fn )F (2 )P + £ )F (20 )F ()

Xn+l = In

This algorithm does not require the second derivative, and it involves the
evaluations of the function and the evaluations of the first derivative.
But, this method has only fifth-order convergence, which is worse than
Algorithm 2.1. Is there a sixth-order iterative method which does require
only the evaluations of the function and the evaluations of its derivative?
Now, let us first consider the approximation of f"(y,, )

n n = “*n

Fom) = 2o n)+ Flag) -3 L L L e, ), 22

which implies

Lf(yn) _ f”(yn)f(yn) ~ Pf(xn’ yn)f(yn) = Hf(xn’ Y, ) 2.3)

(o) (3 )

Similar to Algorithm 2.1, we replace f"(y,) by Ps(x,, y,), then we
construct the following iterative scheme:

Algorithm 2.3. For a given x;, compute the approximate solution

X, 41 by the iterative scheme:

l Hf(xn’ yn) f(yn)
2 ) f,(yn).

Xn+l = n — 1+ 1
1—§Hf(xn,yn

It is obvious that this method involves only the evaluations of the
function and the evaluations of its derivative, and we can verify that the

present method is of sixth-order convergence.
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3. Convergence Analysis

In this section, we give the analysis of convergence of Algorithm 2.3.

Theorem 3.1. Let o be a simple zero of sufficiently differentiable
function f. If x( is sufficiently close to o, then Algorithm 2.3 has sixth-

order convergence.

(k)
Proof. Let e, =x,-a(rn=0,1,2,..) and ¢, = % ffl((go)c)
(k =2, 3, ..). By Taylor’s expansion, we have
Flxn) = f'(@)len + coep + cgey + caen + csep + cgen + Oley )], (3.1)

and
f'(x,) = f(0)[1 + 2cqe,, + 3cge? + deqes + Beser + 6eged + Teqed + O(ell ).

(3.2)
Then, it follows that

I T )
= o+ coe2 + (=2¢F + 2¢3 )es + (4c§ — Teges + Bcy e
+(~8c5 + 20c3c3 —10cocy — 6¢3 + 4cs )ed
+(16¢5 — 52c3cq + 33coch + 28c5cy — 13cqcs — 1Tcgey + Beg el

+0(el). (3.3)
By Equation (3.3), we have
f(yn) = Fl@)lcaer + (263 + 2c3)ep + (5c3 - Tegeg + Bey ey

+(-12¢§ + 24c3cy —10cqc, — 6¢3 + 4cy )ed
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+ (28¢5 — 73c3cg + 3Tcqc? + 34cicy —13cqcs — 1Tcgey + Heg )ed
+0(e})], (3.4)
and
F(y,) = F(0)[1 + 2c2e? + (=4c3 + 4cgeq )ed + (8cy — 11c3es + 6egey e
+(~16¢5 + 28c3cg — 20c3cy + 8cocs )ed
+(32¢8 — 68c5eq + 56cic, — 26c3cs + 10cocg — 16¢ocscy +12¢5 )eb
+0(ey)]. (3.5)

Dividing (3.4) by (3.5) gives

f(yn)
f'(yn)

= [026,21 + 2(—c% +c3 )e,?{ + (305’ — Teges + 3cy )eé

+ (—4c5 +16¢2cq — 6¢3 —10cqcy + 4cs )ed
+(6c5 — 73¢3cs + 41cies + 29¢ocd + 22¢5¢, — 1Tesey
—13c9cs + beg )ed + 0(e! )] (3.6)
According to (3.1), (3.2), (3.4), and (3.5), we have
Hp(x,, y,) = 2c2e2 + A(—c5 + cocq ) ed +(2¢5 — 8cdey + degey e
+(8c3 — 8cieg +12c9¢5 —12c3¢, — 4cgey + 4cges )ed
+ (-24¢§ —146¢5cq + 218chey — 90c3cd + 24¢ +12c5ey
+ 82coc3¢ — 62 —16¢5cs — 8eges + degeg )ed + O(el ). (3.7)

Combining Equations (3.3), (3.6), (3.7), and the iterative scheme of
Algorithm 2.3, we have

el = (cg - 7403(:3 + 73c%c3 + (,‘%(:4 )eg + O(e,z ),

from which, it follows that Algorithm 2.3 has sixth-order convergence.
This completes the proof.
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It is worth noting that, our method is of sixth-order and converges
very rapidly even though it requires only the evaluations of the function
and the evaluations of its first derivative. From the definition of the

efficiency index, one can see this method has a high efficiency index that

is equal to {6 ~ 1.565, which is better than the ones of Newton’s method

V2 ~1.414 and the Chebyshev-Halley methods Y3 ~ 1.442.

4. Numerical Results

We present some numerical results for various functions to illustrate
the efficiency of the new developed iterative methods in this paper. Let

|[f(x,,41)| < € be the stopping criteria for computer programs, where the

tolerance ¢ has been chosen equal to 107'*. We use the following

functions, most of which are the same as in [5, 6], and display the

approximate zeros x".

fi(x) = 2% + 4x? =10, x* =1.365230013414097.
folx) = e™ +cosx, x* =1.746139530408012.

fa(x) = (5x =1)/(4x), x* =0.2.

falx) = xe* —sin? x +3cosx + 5, x" = -1.207647827130919.
f5(x) = * sinx + log(x? +1), x* =0.

fo(x) = x% —e® —3x + 2, x* = 0.257530285439861.

fr(x) = sin® x —x% +1, x* =1.404491648215341.

fa(x) = cosx —x, x* = 0.739085133215161.

Displayed in Table 1 is the number of function evaluation (NEF) required

such that |f(x,,1)| < ¢ for various methods. From Table 1, we conclude

that the variant of Halley’s method (VHM) requires the less NEFs as
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compared to the classical methods including Newton’s method (NM),
Chebyshev’s method (CVM), Cauchy’s method (CYM), and Halley’s
method (HM). Therefore, the new method improves the computational

efficiency greatly.

Table 1. Comparison of various iterative methods

f(x) x0 NM CVM CYM HM VHM
fi 1 12 12 9 9 8
2 12 12 9 9 8
fo 1 8 9 9 9 8
2.5 10 12 9 12 8
f3 0.25 10 9 9 3 8
0.15 12 9 12 3 8
fa -1 10 12 9 9 8
—1.45 12 12 12 9 8
f5 -0.8 10 12 15 9 8
1.2 10 12 12 12 8
fe 2.2 10 12 15 12 8
-25 10 12 12 12 8
f7 1.2 10 12 12 12 8
2.5 12 15 15 15 8
fs 0.1 10 12 9 9 8
2.5 10 12 12 12 8
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